Computing Approximate Pure Nash Equilibria in Digraph k-Coloring Games
نویسندگان
چکیده
We investigate approximate pure Nash equilibria in digraph k-coloring games, where we are given an unweighted directed graph together with a set of k colors. Vertices represent agents and arcs capture their mutual unidirectional interests. The strategy set of each agent v consists of the k colors and the payoff of v in a given state or coloring is given by the number of outgoing neighbors with a color different from the one of v. Such games form some of the basic payoff structures in game theory, model lots of real-world scenarios with selfish agents and extend or are related to several fundamental class of games. It is known that the problem of understanding whether the game admits a pure Nash equilibrium is NP-complete. Therefore we focus on designing polynomial time algorithms that return approximate Nash equilibria. Informally, we say that a coloring is a γ-Nash equilibrium (for some γ ≥ 1) if no agent can strictly improve her payoff by a multiplicative factor of γ by changing color. We first propose a deterministic polynomial time algorithm that, for any k ≥ 3, returns a k-coloring that is a ∆o(G)-Nash equilibrium, where ∆o(G) is the maximum outdegree of the digraph. We then provide our two main results: i) By exploiting the constructive version of the well known Lovász Local Lemma, we show a randomized algorithm with polynomial expected running time that, given any constant k ≥ 2, computes a constant-Nash equilibrium for a broad class of digraphs, i.e., for digraphs where, for any v ∈ V , δ o (G) = Ω(ln ∆o(G)+ln ∆i(G)) where ∆o(G) (resp. ∆i(G)) is the maximum outgoing (resp. maximum ingoing) degree of G, and δ o (G) is the outgoing degree of agent v. ii) For generic digraphs, we show a deterministic polynomial time algorithm that computes a (1+ )-Nash equilibrium, for any > 0, by using O( logn ) colors.
منابع مشابه
Computing Approximate Equilibria in Graphical Games on Arbitrary Graphs
We present PureProp: a new constraint satisfaction algorithm for computing pure-strategy approximate Nash equilibria in complete information games. While this seems quite limited in applicability, we show how PureProp unifies existing algorithms for 1) solving a class of complete information graphical games with arbitrary graph structure for approximate Nash equilibria (Kearns et al., 2001; Ort...
متن کاملComputing Approximate Pure Nash Equilibria in Shapley Value Weighted Congestion Games
We study the computation of approximate pure Nash equilibria in Shapley value (SV) weighted congestion games, introduced in [19]. This class of games considers weighted congestion games in which Shapley values are used as an alternative (to proportional shares) for distributing the total cost of each resource among its users. We focus on the interesting subclass of such games with polynomial re...
متن کاملApproximate Pure Nash Equilibria in Shapley Value Weighted Congestion Games ∗
We study the computation of approximate pure Nash equilibria in Shapley value (SV) weighted congestion games, introduced in [19]. This class of games considers weighted congestion games in which Shapley values are used as an alternative (to proportional shares) for distributing the total cost of each resource among its users. We focus on the interesting subclass of such games with polynomial re...
متن کاملMulti-player Approximate Nash Equilibria
In this paper we study the complexity of finding approximate Nash equilibria in multi-player normal-form games. First, for any constant number n, we present a polynomial-time algorithm for computing a relative ( 1− 1 1+(n−1)n ) -Nash equilibrium in arbitrary nplayer games and a relative ( 1− 1 1+(n−1)n−1 ) -Nash equilibrium in symmetric n-player games. Next, we show that there is an additive ε-...
متن کاملApproximate and Well-supported Approximate Nash Equilibria of Random Bimatrix Games
We focus on the problem of computing approximate Nash equilibria and well-supported approximate Nash equilibria in random bimatrix games, where each player's payoffs are bounded and independent random variables, not necessarily identically distributed, but with common expectations. We show that the completely mixed uniform strategy profile, i.e. the combination of mixed strategies (one per play...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2017